A Tailored Finite Point Method for Solving Steady MHDDuct Flow Problems with Boundary Layers
نویسندگان
چکیده
In this paper we propose a development of the finite difference method, called the tailored finite point method, for solving steady magnetohydrodynamic (MHD) duct flow problemswith a high Hartmann number. When the Hartmann number is large, the MHD duct flow is convection-dominated and thus its solution may exhibit localized phenomena such as the boundary layer. Most conventional numerical methods can not efficiently solve the layer problem because they are lacking in either stability or accuracy. However, the proposed tailored finite point method is capable of resolving high gradients near the layer regions without refining the mesh. Firstly, we devise the tailored finite point method for the scalar inhomogeneous convectiondiffusion problem, and then extend it to the MHD duct flow which consists of a coupled system of convection-diffusion equations. For each interior grid point of a given rectangular mesh, we construct a finite-point difference operator at that point with some nearby grid points, where the coefficients of the difference operator are tailored to some particular properties of the problem. Numerical examples are provided to show the high performance of the proposed method. AMS subject classifications: 65N06, 65N12, 76W05
منابع مشابه
Analytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet
In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملUsing finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle
In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کامل